Arbeitspapier

A Central Limit Theorem and Its Applications to Multicolor Randomly Reinforced Urns

Let (Xn) be a sequence of integrable real random variables, adapted to a filtration (Gn). Define: Cn = n^(1/2) {1/n SUM(k=1:n) Xk - E(Xn+1 | Gn) } and Dn = n^(1/2){ E(Xn+1 | Gn)-Z } where Z is the a.s. limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn,Dn) --> N(0,U) × N(0,V) stably are given, where U, V are certain random variables. In particular, under such conditions, one obtains n^(1/2) { 1/n SUM(k=1:n) Xk - Z } = Cn + Dn --> N(0,U+V) stably. This CLT has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced generalized Polya urns.

Sprache
Englisch

Erschienen in
Series: Quaderni di Dipartimento ; No. 112

Klassifikation
Wirtschaft
Thema
Bayesian statistics – Central limit theorem – Empirical distribution – Poisson-Dirichlet process – Predictive distribution – Random probability measure – Stable convergence – Urn model

Ereignis
Geistige Schöpfung
(wer)
Berti, Patrizia
Crimaldi, Irene
Pratelli, Luca
Rigo, Pietro
Ereignis
Veröffentlichung
(wer)
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
(wo)
Pavia
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Berti, Patrizia
  • Crimaldi, Irene
  • Pratelli, Luca
  • Rigo, Pietro
  • Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)

Entstanden

  • 2010

Ähnliche Objekte (12)