Arbeitspapier
A Central Limit Theorem and Its Applications to Multicolor Randomly Reinforced Urns
Let (Xn) be a sequence of integrable real random variables, adapted to a filtration (Gn). Define: Cn = n^(1/2) {1/n SUM(k=1:n) Xk - E(Xn+1 | Gn) } and Dn = n^(1/2){ E(Xn+1 | Gn)-Z } where Z is the a.s. limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn,Dn) --> N(0,U) × N(0,V) stably are given, where U, V are certain random variables. In particular, under such conditions, one obtains n^(1/2) { 1/n SUM(k=1:n) Xk - Z } = Cn + Dn --> N(0,U+V) stably. This CLT has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced generalized Polya urns.
- Sprache
-
Englisch
- Erschienen in
-
Series: Quaderni di Dipartimento ; No. 112
- Klassifikation
-
Wirtschaft
- Thema
-
Bayesian statistics Central limit theorem Empirical distribution Poisson-Dirichlet process Predictive distribution Random probability measure Stable convergence Urn model
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Berti, Patrizia
Crimaldi, Irene
Pratelli, Luca
Rigo, Pietro
- Ereignis
-
Veröffentlichung
- (wer)
-
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
- (wo)
-
Pavia
- (wann)
-
2010
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Berti, Patrizia
- Crimaldi, Irene
- Pratelli, Luca
- Rigo, Pietro
- Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
Entstanden
- 2010