Arbeitspapier
A Central Limit Theorem and Its Applications to Multicolor Randomly Reinforced Urns
Let (Xn) be a sequence of integrable real random variables, adapted to a filtration (Gn). Define: Cn = n^(1/2) {1/n SUM(k=1:n) Xk - E(Xn+1 | Gn) } and Dn = n^(1/2){ E(Xn+1 | Gn)-Z } where Z is the a.s. limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn,Dn) --> N(0,U) × N(0,V) stably are given, where U, V are certain random variables. In particular, under such conditions, one obtains n^(1/2) { 1/n SUM(k=1:n) Xk - Z } = Cn + Dn --> N(0,U+V) stably. This CLT has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced generalized Polya urns.
- Language
-
Englisch
- Bibliographic citation
-
Series: Quaderni di Dipartimento ; No. 112
- Classification
-
Wirtschaft
- Subject
-
Bayesian statistics Central limit theorem Empirical distribution Poisson-Dirichlet process Predictive distribution Random probability measure Stable convergence Urn model
- Event
-
Geistige Schöpfung
- (who)
-
Berti, Patrizia
Crimaldi, Irene
Pratelli, Luca
Rigo, Pietro
- Event
-
Veröffentlichung
- (who)
-
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
- (where)
-
Pavia
- (when)
-
2010
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Berti, Patrizia
- Crimaldi, Irene
- Pratelli, Luca
- Rigo, Pietro
- Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
Time of origin
- 2010