Arbeitspapier

A Central Limit Theorem and Its Applications to Multicolor Randomly Reinforced Urns

Let (Xn) be a sequence of integrable real random variables, adapted to a filtration (Gn). Define: Cn = n^(1/2) {1/n SUM(k=1:n) Xk - E(Xn+1 | Gn) } and Dn = n^(1/2){ E(Xn+1 | Gn)-Z } where Z is the a.s. limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn,Dn) --> N(0,U) × N(0,V) stably are given, where U, V are certain random variables. In particular, under such conditions, one obtains n^(1/2) { 1/n SUM(k=1:n) Xk - Z } = Cn + Dn --> N(0,U+V) stably. This CLT has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced generalized Polya urns.

Language
Englisch

Bibliographic citation
Series: Quaderni di Dipartimento ; No. 112

Classification
Wirtschaft
Subject
Bayesian statistics – Central limit theorem – Empirical distribution – Poisson-Dirichlet process – Predictive distribution – Random probability measure – Stable convergence – Urn model

Event
Geistige Schöpfung
(who)
Berti, Patrizia
Crimaldi, Irene
Pratelli, Luca
Rigo, Pietro
Event
Veröffentlichung
(who)
Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)
(where)
Pavia
(when)
2010

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Berti, Patrizia
  • Crimaldi, Irene
  • Pratelli, Luca
  • Rigo, Pietro
  • Università degli Studi di Pavia, Dipartimento di Economia Politica e Metodi Quantitativi (EPMQ)

Time of origin

  • 2010

Other Objects (12)