Algebraic structures for pairwise comparison matrices: Consistency, social choices and Arrow’s theorem

Abstract: We present the algebraic structures behind the approaches used to work with pairwise comparison matrices and, in general, the representation of preferences. We obtain a general definition of consistency and a universal decomposition in the space of PCMs, which allow us to define a consistency index. Also Arrow’s theorem, which is presented in a general form, is relevant. All the presented results can be seen in the main formulations of PCMs, i.e., multiplicative, additive and fuzzy approach, by the fact that each of them is a particular interpretation of the more general algebraic structure needed to deal with these theories.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Algebraic structures for pairwise comparison matrices: Consistency, social choices and Arrow’s theorem ; volume:71 ; number:5 ; year:2021 ; pages:1047-1062 ; extent:16
Mathematica Slovaca ; 71, Heft 5 (2021), 1047-1062 (gesamt 16)

Urheber
Barbieri, Giuseppina
Boccuto, Antonio
Vitale, Gaetano

DOI
10.1515/ms-2021-0038
URN
urn:nbn:de:101:1-2022100114041671188303
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Barbieri, Giuseppina
  • Boccuto, Antonio
  • Vitale, Gaetano

Ähnliche Objekte (12)