Arbeitspapier

EU merger policy predictability using random forests

I study the predictability of the EC's merger decision procedure before and after the 2004 merger policy reform based on a dataset covering all affected markets of mergers with an official decision documented by DG Comp between 1990 and 2014. Using the highly flexible, non-parametric random forest algorithm to predict DG Comp's assessment of competitive concerns in markets affected by a merger, I find that the predictive performance of the random forests is much better than the performance of simple linear models. In particular, the random forests do much better in predicting the rare event of competitive concerns. Secondly, postreform, DG Comp seems to base its assessment on a more complex interaction of merger and market characteristics than pre-reform. The highly flexible random forest algorithm is able to detect these potentially complex interactions and, therefore, still allows for high prediction precision.

Sprache
Englisch

Erschienen in
Series: DIW Discussion Papers ; No. 1800

Klassifikation
Wirtschaft
Antitrust Law
Antitrust Issues and Policies: General
Thema
Merger policy reform
DG Competition
Prediction
Random Forests

Ereignis
Geistige Schöpfung
(wer)
Affeldt, Pauline
Ereignis
Veröffentlichung
(wer)
Deutsches Institut für Wirtschaftsforschung (DIW)
(wo)
Berlin
(wann)
2019

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Affeldt, Pauline
  • Deutsches Institut für Wirtschaftsforschung (DIW)

Entstanden

  • 2019

Ähnliche Objekte (12)