Genome editing of SNAI1 gene in rhabdomyosarcoma: a novel model for studies of its role

Abstract: Genome editing (GE) tools and RNA interference technology enable the modulation of gene expression in cancer research. While GE mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 or transcription activator-like effector nucleases (TALEN) activity can be used to induce gene knockouts, shRNA interacts with the targeted transcript, resulting in gene knockdown. Here, we compare three different methods for SNAI1 knockout or knockdown in rhabdomyosarcoma (RMS) cells. RMS is the most common sarcoma in children and its development has been previously associated with SNAI1 transcription factor activity. To investigate the role of SNAI1 in RMS development, we compared CRISPR/Cas9, TALEN, and shRNA tools to identify the most efficient tool for the modulation of SNAI1 expression with biological effects. Subsequently, the genome sequence, transcript levels, and protein expression of SNAI1 were evaluated. The modulation of SNAI1 using three different approaches affected the morphology of the cells and modulated the expression of myogenic factors and HDAC1. Our study revealed a similar effectiveness of the tested methods. Nevertheless, the low efficiency of the GE tools was a limiting factor in obtaining biallelic gene knockouts. To conclude, we established and characterized three different models of SNAI1 knockout and knockdown that might be used in further studies investigating the role of SNAI1 in RMS

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Cells. - 9, 5 (2020) , 1095, ISSN: 2073-4409

Keyword
Rhabdomyosarkom
Genome Editing
CRISPR/Cas-Methode

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2020
Creator
Ulman, Aleksandra
Skrzypek, Klaudia
Konieczny, Pawel
Mussolino, Claudio
Cathomen, Anton
Majka, Marcin

DOI
10.3390/cells9051095
URN
urn:nbn:de:bsz:25-freidok-1663595
Rights
Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
25.03.2025, 1:52 PM CET

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2020

Other Objects (12)