Arbeitspapier

News-driven uncertainty fluctuations

We embed a news shock, a noisy indicator of the future state, in a two-state Markovswitching growth model. Our framework, combined with parameter learning, features rich history-dependent uncertainty dynamics. We show that bad news that arrives during a prolonged economic boom can trigger a "Minsky moment" - a sudden collapse in asset values. The effect is greatly amplified when agents have a preference for early resolution of uncertainty. We leverage survey recession probability forecasts to solve a sequential learning problem and estimate the full posterior distribution of model primitives. We identify historical periods in which uncertainty and risk premia were elevated because of news shocks.

Sprache
Englisch

Erschienen in
Series: Working Papers ; No. 18-3

Klassifikation
Wirtschaft
Bayesian Analysis: General
Asset Pricing; Trading Volume; Bond Interest Rates
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Thema
Bayesian learning
discrete environment
Minsky moment
news shocks
recursive utility
risk premium
survey forecasts
uncertainty

Ereignis
Geistige Schöpfung
(wer)
Song, Dongho
Tang, Jenny
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Boston
(wo)
Boston, MA
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Song, Dongho
  • Tang, Jenny
  • Federal Reserve Bank of Boston

Entstanden

  • 2018

Ähnliche Objekte (12)