Arbeitspapier
News-driven uncertainty fluctuations
We embed a news shock, a noisy indicator of the future state, in a two-state Markovswitching growth model. Our framework, combined with parameter learning, features rich history-dependent uncertainty dynamics. We show that bad news that arrives during a prolonged economic boom can trigger a "Minsky moment" - a sudden collapse in asset values. The effect is greatly amplified when agents have a preference for early resolution of uncertainty. We leverage survey recession probability forecasts to solve a sequential learning problem and estimate the full posterior distribution of model primitives. We identify historical periods in which uncertainty and risk premia were elevated because of news shocks.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers ; No. 18-3
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Asset Pricing; Trading Volume; Bond Interest Rates
Business Fluctuations; Cycles
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
- Thema
-
Bayesian learning
discrete environment
Minsky moment
news shocks
recursive utility
risk premium
survey forecasts
uncertainty
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Song, Dongho
Tang, Jenny
- Ereignis
-
Veröffentlichung
- (wer)
-
Federal Reserve Bank of Boston
- (wo)
-
Boston, MA
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Song, Dongho
- Tang, Jenny
- Federal Reserve Bank of Boston
Entstanden
- 2018