Konferenzbeitrag
Data-driven Knowledge Extraction for the Food Domain
In this paper, we examine methods to automatically extract domain-specific knowledge from the food domain from unlabeled natural language text. We employ different extraction methods ranging from surface patterns to co-occurrence measures applied on different parts of a document. We show that the effectiveness of a particular method depends very much on the relation type considered and that there is no single method that works equally well for every relation type. We also examine a combination of extraction methods and also consider relationships between different relation types. The extraction methods are applied both on a domain-specific corpus and the domain-independent factual knowledge base Wikipedia. Moreover, we examine an open-domain lexical ontology for suitability.
- Sprache
-
Englisch
- Thema
-
Information Extraction
Computerlinguistik
Korpus <Linguistik>
Empirische Linguistik
Lebensmittel
Sprache
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Wiegand, Michael
Roth, Benjamin
Klakow, Dietrich
- Ereignis
-
Veröffentlichung
- (wer)
-
Wien : Österreichische Gesellschaft für Artificial Intelligence
- (wann)
-
2019-01-28
- URN
-
urn:nbn:de:bsz:mh39-84529
- Letzte Aktualisierung
-
21.03.0056, 10:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Wiegand, Michael
- Roth, Benjamin
- Klakow, Dietrich
- Wien : Österreichische Gesellschaft für Artificial Intelligence
Entstanden
- 2019-01-28