Konferenzbeitrag

Data-driven Knowledge Extraction for the Food Domain

In this paper, we examine methods to automatically extract domain-specific knowledge from the food domain from unlabeled natural language text. We employ different extraction methods ranging from surface patterns to co-occurrence measures applied on different parts of a document. We show that the effectiveness of a particular method depends very much on the relation type considered and that there is no single method that works equally well for every relation type. We also examine a combination of extraction methods and also consider relationships between different relation types. The extraction methods are applied both on a domain-specific corpus and the domain-independent factual knowledge base Wikipedia. Moreover, we examine an open-domain lexical ontology for suitability.

Data-driven Knowledge Extraction for the Food Domain

Urheber*in: Wiegand, Michael; Roth, Benjamin; Klakow, Dietrich

Urheberrechtsschutz

0
/
0

Sprache
Englisch

Thema
Information Extraction
Computerlinguistik
Korpus <Linguistik>
Empirische Linguistik
Lebensmittel
Sprache

Ereignis
Geistige Schöpfung
(wer)
Wiegand, Michael
Roth, Benjamin
Klakow, Dietrich
Ereignis
Veröffentlichung
(wer)
Wien : Österreichische Gesellschaft für Artificial Intelligence
(wann)
2019-01-28

URN
urn:nbn:de:bsz:mh39-84529
Letzte Aktualisierung
21.03.0056, 10:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Wiegand, Michael
  • Roth, Benjamin
  • Klakow, Dietrich
  • Wien : Österreichische Gesellschaft für Artificial Intelligence

Entstanden

  • 2019-01-28

Ähnliche Objekte (12)