Arbeitspapier
Non-Manipulable Domains for the Borda Count
We characterize the preference domains on which the Borda count satisfies Arrow's ``independence of irrelevant alternatives" condition. Under a weak richness condition, these domains are obtained by fixing one preference ordering and including all its cyclic permutations (``Condorcet cycles"). We then ask on which domains the Borda count is non-manipulable. It turns out that it is non-manipulable on a broader class of domains when combined with appropriately chosen tie-breaking rules. On the other hand, we also prove that the rich domains on which the Borda count is non-manipulable for all possible tie-breaking rules are again the cyclic permutation domains.
- Sprache
-
Englisch
- Erschienen in
-
Series: Bonn Econ Discussion Papers ; No. 13/2003
- Klassifikation
-
Wirtschaft
Social Choice; Clubs; Committees; Associations
- Thema
-
Borda count
scoring methods
non-manipulability
Unmöglichkeitstheorem
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Barbie, Martin
Puppe, Clemens
Tasnádi, Attila
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Bonn, Bonn Graduate School of Economics (BGSE)
- (wo)
-
Bonn
- (wann)
-
2003
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Barbie, Martin
- Puppe, Clemens
- Tasnádi, Attila
- University of Bonn, Bonn Graduate School of Economics (BGSE)
Entstanden
- 2003