Konferenzbeitrag
Evaluating the Impact of Coder Errors on Active Learning
Active Learning (AL) has been proposed as a technique to reduce the amount of annotated data needed in the context of supervised classification. While various simulation studies for a number of NLP tasks have shown that AL works well on goldstandard data, there is some doubt whether the approach can be successful when applied to noisy, real-world data sets. This paper presents a thorough evaluation of the impact of annotation noise on AL and shows that systematic noise resulting from biased coder decisions can seriously harm the AL process. We present a method to filter out inconsistent annotations during AL and show that this makes AL far more robust when applied to noisy data.
- Sprache
-
Englisch
- Thema
-
Linguistik
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Rehbein, Ines
Ruppenhofer, Josef
- Ereignis
-
Veröffentlichung
- (wer)
-
Stroudsburg : Association for Computational Linguistics
- (wann)
-
2016-09-22
- URN
-
urn:nbn:de:bsz:mh39-52929
- Letzte Aktualisierung
-
06.03.2025, 09:00 MEZ
Datenpartner
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Konferenzbeitrag
Beteiligte
- Rehbein, Ines
- Ruppenhofer, Josef
- Stroudsburg : Association for Computational Linguistics
Entstanden
- 2016-09-22