Konferenzbeitrag

Evaluating the Impact of Coder Errors on Active Learning

Active Learning (AL) has been proposed as a technique to reduce the amount of annotated data needed in the context of supervised classification. While various simulation studies for a number of NLP tasks have shown that AL works well on goldstandard data, there is some doubt whether the approach can be successful when applied to noisy, real-world data sets. This paper presents a thorough evaluation of the impact of annotation noise on AL and shows that systematic noise resulting from biased coder decisions can seriously harm the AL process. We present a method to filter out inconsistent annotations during AL and show that this makes AL far more robust when applied to noisy data.

Evaluating the Impact of Coder Errors on Active Learning

Urheber*in: Rehbein, Ines; Ruppenhofer, Josef

Urheberrechtsschutz

0
/
0

Sprache
Englisch

Thema
Linguistik

Ereignis
Geistige Schöpfung
(wer)
Rehbein, Ines
Ruppenhofer, Josef
Ereignis
Veröffentlichung
(wer)
Stroudsburg : Association for Computational Linguistics
(wann)
2016-09-22

URN
urn:nbn:de:bsz:mh39-52929
Letzte Aktualisierung
06.03.2025, 09:00 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Leibniz-Institut für Deutsche Sprache - Bibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Konferenzbeitrag

Beteiligte

  • Rehbein, Ines
  • Ruppenhofer, Josef
  • Stroudsburg : Association for Computational Linguistics

Entstanden

  • 2016-09-22

Ähnliche Objekte (12)