Forecasting COVID-19 Confirmed Cases in Ghana: A Model Selection Approach

Abstract: This study seeks to determine an appropriate statistical technique for forecasting the cumulated confirm cases of Coronavirus in Ghana. Cumulated daily data spanning from March 12, 2020, to August 04, 2020, was retrieved from the Center for Systems Science and Engineering at Johns Hopkins University. Four statistical forecasting techniques: Autoregressive Integrated Moving Average, Artificial Neural Network, Exponential smoothing and Autoregressive Fractional Integrated Moving Average were fitted to the COVID-19 series. Their respective forecast accuracy measures were compared to select the appropriate technique for forecasting the COVID-19 cases. Our findings revealed that the ARFIMA technique was a suitable statistical model for predicting COVID-19 cases in Ghana. The "best" model for forecasting is ARFIMA (2, 0.49, 4) which passed all the needed diagnostic tests. An unequal weight was estimated to derive a combined model for all four forecasting techniques. A 149-cumulated daily

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Path of Science ; 7 (2021) 2 ; 4001-4010

Klassifikation
Wirtschaft

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(wann)
2021
Urheber
Twumasi-Ankrah, Sampson
Owusu, Michael
Appiah, Simon Kojo
Pels, Wilhemina Adoma
Arthur, Doris

DOI
10.22178/pos.67-2
URN
urn:nbn:de:101:1-2022071906363008367553
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:31 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Twumasi-Ankrah, Sampson
  • Owusu, Michael
  • Appiah, Simon Kojo
  • Pels, Wilhemina Adoma
  • Arthur, Doris
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Entstanden

  • 2021

Ähnliche Objekte (12)