Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China

Abstract > 0.8 Kling–Gupta efficiency in 161 out of the 179 catchments. By the late 21st century, bivariate drought risk is projected to double over 60 % of the catchments mainly located in southwestern China under SSP5-85, which shows the increase in drought duration and severity. Our hybrid model also projected substantial GDP and population exposure by increasing bivariate drought risks, suggesting an urgent need to design climate mitigation strategies for a sustainable development pathway.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China ; volume:28 ; number:14 ; year:2024 ; pages:3305-3326 ; extent:22
Hydrology and earth system sciences ; 28, Heft 14 (2024), 3305-3326 (gesamt 22)

Creator
Liu, Rutong
Yin, Jiabo
Slater, Louise
Kang, Shengyu
Yang, Yuanhang
Liu, Pan
Guo, Jiali
Gu, Xihui
Zhang, Xiang
Volchak, Aliaksandr

DOI
10.5194/hess-28-3305-2024
URN
urn:nbn:de:101:1-2408061449402.840749146917
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:57 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Liu, Rutong
  • Yin, Jiabo
  • Slater, Louise
  • Kang, Shengyu
  • Yang, Yuanhang
  • Liu, Pan
  • Guo, Jiali
  • Gu, Xihui
  • Zhang, Xiang
  • Volchak, Aliaksandr

Other Objects (12)