Artikel

On nondegenerate M-stationary points for sparsity constrained nonlinear optimization

We study sparsity constrained nonlinear optimization (SCNO) from a topological point of view. Special focus will be on M-stationary points from Burdakov et al. (SIAM J Optim 26:397–425, 2016), also introduced as NC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^C$$\end{document}-stationary points in Pan et al. (J Oper Res Soc China 3:421–439, 2015). We introduce nondegenerate M-stationary points and define their M-index. We show that all M-stationary points are generically nondegenerate. In particular, the sparsity constraint is active at all local minimizers of a generic SCNO. Some relations to other stationarity concepts, such as S-stationarity, basic feasibility, and CW-minimality, are discussed in detail. By doing so, the issues of instability and degeneracy of points due to different stationarity concepts are highlighted. The concept of M-stationarity allows to adequately describe the global structure of SCNO along the lines of Morse theory. For that, we study topological changes of lower level sets while passing an M-stationary point. As novelty for SCNO, multiple cells of dimension equal to the M-index are needed to be attached. This intriguing fact is in strong contrast with other optimization problems considered before, where just one cell suffices. As a consequence, we derive a Morse relation for SCNO, which relates the numbers of local minimizers and M-stationary points of M-index equal to one. The appearance of such saddle points cannot be thus neglected from the perspective of global optimization. Due to the multiplicity phenomenon in cell-attachment, a saddle point may lead to more than two different local minimizers. We conclude that the relatively involved structure of saddle points is the source of well-known difficulty if solving SCNO to global optimality.

Sprache
Englisch

Erschienen in
Journal: Journal of Global Optimization ; ISSN: 1573-2916 ; Volume: 82 ; Year: 2021 ; Issue: 2 ; Pages: 219-242 ; New York, NY: Springer US

Klassifikation
Mathematik
Thema
Sparsity constraint
M-stationarity
M-index
Nondegeneracy
Genericity
Morse theory
Saddle points

Ereignis
Geistige Schöpfung
(wer)
Lämmel, S.
Shikhman, V.
Ereignis
Veröffentlichung
(wer)
Springer US
(wo)
New York, NY
(wann)
2021

DOI
doi:10.1007/s10898-021-01070-7
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Lämmel, S.
  • Shikhman, V.
  • Springer US

Entstanden

  • 2021

Ähnliche Objekte (12)