On the clinical acceptance of black‐box systems for EEG seizure prediction

Abstract: Seizure prediction may be the solution for epileptic patients whose drugs and surgery do not control seizures. Despite 46 years of research, few devices/systems underwent clinical trials and/or are commercialized, where the most recent state-of-the-art approaches, as neural networks models, are not used to their full potential. The latter demonstrates the existence of social barriers to new methodologies due to data bias, patient safety, and legislation compliance. In the form of literature review, we performed a qualitative study to analyze the seizure prediction ecosystem to find these social barriers. With the Grounded Theory, we draw hypotheses from data, while with the Actor-Network Theory we considered that technology shapes social configurations and interests, being fundamental in healthcare. We obtained a social network that describes the ecosystem and propose research guidelines aiming at clinical acceptance. Our most relevant conclusion is the need for model explainability, but not necessarily intrinsically interpretable models, for the case of seizure prediction. Accordingly, we argue that it is possible to develop robust prediction models, including black-box systems to some extent, while avoiding data bias, ensuring patient safety, and still complying with legislation, if they can deliver human- comprehensible explanations. Due to skepticism and patient safety reasons, many authors advocate the use of transparent models which may limit their performance and potential. Our study highlights a possible path, by using model explainability, on how to overcome these barriers while allowing the use of more computationally robust models

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Epilepsia open. - 7, 2 (2022) , 247-259, ISSN: 2470-9239

Klassifikation
Medizin, Gesundheit

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Pinto, Mauro F.
Leal, Adriana
Lopes, Fabio
Pais, José
Dourado, Antonio
Sales, Francisco
Martins, Pedro
Teixeira, César Alexandre

DOI
10.1002/epi4.12597
URN
urn:nbn:de:bsz:25-freidok-2448474
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:55 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Pinto, Mauro F.
  • Leal, Adriana
  • Lopes, Fabio
  • Pais, José
  • Dourado, Antonio
  • Sales, Francisco
  • Martins, Pedro
  • Teixeira, César Alexandre
  • Universität

Entstanden

  • 2024

Ähnliche Objekte (12)