Arbeitspapier

Cyclical consumption

Recessions and expansions are often caused or reinforced by developments in private consumption - the largest component of aggregate demand - which, as a result, varies over the business cycle. As such, an accurate measurement of the cyclical component of consumption and an understanding of its drivers is essential. We estimate US cyclical consumption using a multivariate Beveridge-Nelson decomposition based on a medium-scale Bayesian vector autoregression. The choice of variables included in the analysis is informed by a general savers-spenders model. We compare the predictive power of our multivariate cyclical consumption variable to that of univariate measures such as the recently introduced cc variable by Atanasov et al. (2020). An informational decomposition points to variables related to incomplete markets (precautionary motives and credit constraints) as the main contributors to cyclical consumption. This is confirmed by a causal analysis that attributes between 20% and 40% of cyclical movements in consumption to uncertainty shocks.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2023-064/VI

Klassifikation
Wirtschaft
Macroeconomics: Consumption; Saving; Wealth
Business Fluctuations; Cycles
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
cyclical consumption
Beveridge-Nelson decomposition
multivariate information
incomplete markets
uncertainty shocks

Ereignis
Geistige Schöpfung
(wer)
Berger, Tino
Pozzi, Lorenzo
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Berger, Tino
  • Pozzi, Lorenzo
  • Tinbergen Institute

Entstanden

  • 2023

Ähnliche Objekte (12)