Arbeitspapier
A stochastic reversible investment problem on a finite-time horizon: Free boundary analysis
We study a continuous-time, finite horizon optimal stochastic reversible investment problem for a firm producing a single good. The production capacity is modeled as a onedimensional,time-homogeneous, linear diffusion controlled by a bounded variation process which represents the cumulative investment-disinvestment strategy. We associate to the investmentdisinvestment problem a zero-sum optimal stopping game and characterize its value function through a free boundary problem with two moving boundaries. These are continuous, bounded and monotone curves that solve a system of non-linear integral equations of Volterra type. The optimal investment-disinvestment strategy is then shown to be a diff usion reflected at the two boundaries.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Papers ; No. 477
- Klassifikation
-
Wirtschaft
Mathematical Methods
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Investment; Capital; Intangible Capital; Capacity
- Thema
-
reversible investment
singular stochastic control
zero-sum optimal stopping games
free boundary problems
Skorokhod reflection problem
- Ereignis
-
Geistige Schöpfung
- (wer)
-
De Angelis, Tiziano
Ferrari, Giorgio
- Ereignis
-
Veröffentlichung
- (wer)
-
Bielefeld University, Institute of Mathematical Economics (IMW)
- (wo)
-
Bielefeld
- (wann)
-
2013
- Handle
- URN
-
urn:nbn:de:0070-pub-26740839
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- De Angelis, Tiziano
- Ferrari, Giorgio
- Bielefeld University, Institute of Mathematical Economics (IMW)
Entstanden
- 2013