Deep proteomic investigation of metabolic adaptation in mycobacteria under different growth conditions

Abstract: Understanding the complex mechanisms of mycobacterial pathophysiology and adaptive responses presents challenges that can hinder drug development. However, employing physiologically relevant conditions, such as those found in human macrophages or simulating physiological growth conditions, holds promise for more effective drug screening. A valuable tool in this pursuit is proteomics, which allows for a comprehensive analysis of adaptive responses. In our study, we focused on Mycobacterium smegmatis, a model organism closely related to the pathogenic Mycobacterium tuberculosis, to investigate the impact of various carbon sources on mycobacterial growth. To facilitate this research, we developed a cost-effective, straightforward, and high-quality pipeline for proteome analysis and compared six different carbon source conditions. Additionally, we have created an online tool to present and analyze our data, making it easily accessible to the community. This user-friendly platform allows researchers and interested parties to explore and interpret the results effectively. Our findings shed light on mycobacterial adaptive physiology and present potential targets for drug development, contributing to the fight against tuberculosis

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Proteomes. - 11, 4 (2023) , 39, ISSN: 2227-7382

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Zmyslia, Mariia
Fröhlich, Klemens
Dao, Trinh
Schmidt, Alexander
Jessen-Trefzer, Claudia

DOI
10.3390/proteomes11040039
URN
urn:nbn:de:bsz:25-freidok-2419822
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:47 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2023

Ähnliche Objekte (12)