Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
1 Online-Ressource.
Language
Englisch

Bibliographic citation
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks ; volume:14 ; number:1 ; day:20 ; month:11 ; year:2023 ; pages:1-13 ; date:12.2023
Nature Communications ; 14, Heft 1 (20.11.2023), 1-13, 12.2023

Creator
Bonnet, Djohan
Hirtzlin, Tifenn
Majumdar, Atreya
Dalgaty, Thomas
Esmanhotto, Eduardo
Meli, Valentina
Castellani, Niccolo
Martin, Simon
Nodin, Jean-François
Bourgeois, Guillaume
Portal, Jean-Michel
Querlioz, Damien
Vianello, Elisa
Contributor
SpringerLink (Online service)

DOI
10.1038/s41467-023-43317-9
URN
urn:nbn:de:101:1-2024020710310107870822
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bonnet, Djohan
  • Hirtzlin, Tifenn
  • Majumdar, Atreya
  • Dalgaty, Thomas
  • Esmanhotto, Eduardo
  • Meli, Valentina
  • Castellani, Niccolo
  • Martin, Simon
  • Nodin, Jean-François
  • Bourgeois, Guillaume
  • Portal, Jean-Michel
  • Querlioz, Damien
  • Vianello, Elisa
  • SpringerLink (Online service)

Other Objects (12)