Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
1 Online-Ressource.
- Language
-
Englisch
- Bibliographic citation
-
Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks ; volume:14 ; number:1 ; day:20 ; month:11 ; year:2023 ; pages:1-13 ; date:12.2023
Nature Communications ; 14, Heft 1 (20.11.2023), 1-13, 12.2023
- Creator
-
Bonnet, Djohan
Hirtzlin, Tifenn
Majumdar, Atreya
Dalgaty, Thomas
Esmanhotto, Eduardo
Meli, Valentina
Castellani, Niccolo
Martin, Simon
Nodin, Jean-François
Bourgeois, Guillaume
Portal, Jean-Michel
Querlioz, Damien
Vianello, Elisa
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1038/s41467-023-43317-9
- URN
-
urn:nbn:de:101:1-2024020710310107870822
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:31 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bonnet, Djohan
- Hirtzlin, Tifenn
- Majumdar, Atreya
- Dalgaty, Thomas
- Esmanhotto, Eduardo
- Meli, Valentina
- Castellani, Niccolo
- Martin, Simon
- Nodin, Jean-François
- Bourgeois, Guillaume
- Portal, Jean-Michel
- Querlioz, Damien
- Vianello, Elisa
- SpringerLink (Online service)