Arbeitspapier

Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions

Path forecasts, defined as sequences of individual forecasts, generated by vector autoregressions are widely used in applied work. It has been recognized that a profound econometric analysis often requires, besides the path forecast, a joint prediction region that contains the whole future path with a prespecified coverage probability. The forecasting literature offers several different methods for computing joint prediction regions, where the existing methods are either bootstrap based or rely on asymptotic results. The aim of this paper is to investigate the finite-sample performance of three methods for constructing joint prediction regions in various scenarios via Monte Carlo simulations.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 181 [rev.]

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Forecasting Models; Simulation Methods
Thema
Path Forecast
Joint Prediction Region
Monte Carlo Simulation

Ereignis
Geistige Schöpfung
(wer)
Bruder, Stefan
Ereignis
Veröffentlichung
(wer)
University of Zurich, Department of Economics
(wo)
Zurich
(wann)
2015

DOI
doi:10.5167/uzh-101244
Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bruder, Stefan
  • University of Zurich, Department of Economics

Entstanden

  • 2015

Ähnliche Objekte (12)