Arbeitspapier

Estimating High-Dimensional Time Series Models.

We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse,high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly, larger than the number of observations. We show the adaLASSO consistently chooses the relevant variables as the number of observations increases (model selection consistency), and has the oracle property, even when the errors are non-Gaussian and conditionally heteroskedastic. A simulation study shows the method performs well in very general settings. Finally, we consider two applications: in the first one the goal is to forecast quarterlyUS inflation one-step ahead, and in the second we are interested in the excess return of the S&P500 index. The method used outperforms the usual benchmarks in the literature.

Sprache
Englisch

Erschienen in
Series: Texto para discussão ; No. 602

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
Zeitreihenanalyse

Ereignis
Geistige Schöpfung
(wer)
Medeiros, Marcelo C.
Mendes, Eduardo F.
Ereignis
Veröffentlichung
(wer)
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
(wo)
Rio de Janeiro
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Medeiros, Marcelo C.
  • Mendes, Eduardo F.
  • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia

Entstanden

  • 2012

Ähnliche Objekte (12)