Arbeitspapier

Prediction of Gas Concentration based on the Opposite Degree Algorithm

In order to study the dynamic changes in gas concentration, to reduce gas hazards, and to protect and improve mining safety, a new method is proposed to predict gas concentration. The method is based on the opposite degree algorithm. Priori and posteriori values, opposite degree computation, opposite space, prior matrix, and posterior matrix are 6 basic concepts of opposite degree algorithm. Several opposite degree numerical formulae to calculate the opposite degrees between gas concentration data and gas concentration data trends can be used to predict empirical results. The opposite degree numerical computation (OD-NC) algorithm has greater accuracy than several common prediction methods, such as RBF (Radial Basis Function) and GRNN (General Regression Neural Network). The prediction mean relative errors of RBF, GRNN and OD-NC are 7.812%, 5.674% and 3.284%, respectively. Simulation experiments shows that the OD-NC algorithm is feasible and effective.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 16-027/III

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Computational Techniques; Simulation Modeling
Mining, Extraction, and Refining: Hydrocarbon Fuels
Thema
Gas concentration
opposite degree algorithm
data prediction
mining safety
numerical simulations

Ereignis
Geistige Schöpfung
(wer)
Yue, Xiao-Guang
Gao, Rui
McAleer, Michael
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2016

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Yue, Xiao-Guang
  • Gao, Rui
  • McAleer, Michael
  • Tinbergen Institute

Entstanden

  • 2016

Ähnliche Objekte (12)