Artikel

On uniform asymptotic risk of averaging GMM estimators

This paper studies the averaging GMM estimator that combines a conservative GMM estimator based on valid moment conditions and an aggressive GMM estimator based on both valid and possibly misspecified moment conditions, where the weight is the sample analog of an infeasible optimal weight. We establish asymptotic theory on uniform approximation of the upper and lower bounds of the finite-sample truncated risk difference between any two estimators, which is used to compare the averaging GMM estimator and the conservative GMM estimator. Under some sufficient conditions, we show that the asymptotic lower bound of the truncated risk difference between the averaging estimator and the conservative estimator is strictly less than zero, while the asymptotic upper bound is zero uniformly over any degree of misspecification. The results apply to quadratic loss functions. This uniform asymptotic dominance is established in non-Gaussian semiparametric nonlinear models.

Sprache
Englisch

Erschienen in
Journal: Quantitative Economics ; ISSN: 1759-7331 ; Volume: 10 ; Year: 2019 ; Issue: 3 ; Pages: 931-979 ; New Haven, CT: The Econometric Society

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models: Instrumental Variables (IV) Estimation
Model Evaluation, Validation, and Selection
Thema
Asymptotic risk
finite-sample risk
generalized shrinkage estimator
GMM
misspecification
model averaging
nonstandard estimator
uniform approximation

Ereignis
Geistige Schöpfung
(wer)
Cheng, Xu
Liao, Zhipeng
Shi, Ruoyao
Ereignis
Veröffentlichung
(wer)
The Econometric Society
(wo)
New Haven, CT
(wann)
2019

DOI
doi:10.3982/QE711
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Cheng, Xu
  • Liao, Zhipeng
  • Shi, Ruoyao
  • The Econometric Society

Entstanden

  • 2019

Ähnliche Objekte (12)