The Weighted Mean Curvature Derivative of a Space-Filling Diagram
Abstract: Representing an atom by a solid sphere in 3-dimensional Euclidean space, we get the space-filling diagram of a molecule by taking the union. Molecular dynamics simulates its motion subject to bonds and other forces, including the solvation free energy. The morphometric approach [12, 17] writes the latter as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted mean curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [3], and the weighted Gaussian curvature [1], this yields the derivative of the morphometric expression of the solvation free energy.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
The Weighted Mean Curvature Derivative of a Space-Filling Diagram ; volume:8 ; number:1 ; year:2020 ; pages:51-67 ; extent:17
Computational and mathematical biophysics ; 8, Heft 1 (2020), 51-67 (gesamt 17)
- Creator
-
Akopyan, Arsenyi
Edelsbrunner, Herbert
- DOI
-
10.1515/cmb-2020-0100
- URN
-
urn:nbn:de:101:1-2410261649054.906517184716
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:31 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Akopyan, Arsenyi
- Edelsbrunner, Herbert