The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram
Abstract: The morphometric approach [11, 14] writes the solvation free energy as a linear combination of weighted versions of the volume, area, mean curvature, and Gaussian curvature of the space-filling diagram. We give a formula for the derivative of the weighted Gaussian curvature. Together with the derivatives of the weighted volume in [7], the weighted area in [4], and the weighted mean curvature in [1], this yields the derivative of the morphometric expression of solvation free energy.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
The Weighted Gaussian Curvature Derivative of a Space-Filling Diagram ; volume:8 ; number:1 ; year:2020 ; pages:74-88 ; extent:15
Computational and mathematical biophysics ; 8, Heft 1 (2020), 74-88 (gesamt 15)
- Creator
-
Akopyan, Arsenyi
Edelsbrunner, Herbert
- DOI
-
10.1515/cmb-2020-0101
- URN
-
urn:nbn:de:101:1-2410261659005.631228017551
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:20 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Akopyan, Arsenyi
- Edelsbrunner, Herbert