Prediction of acute coronary syndromes by urinary proteome analysis

Abstract: Identification of individuals who are at risk of suffering from acute coronary syndromes (ACS) may allow to introduce preventative measures. We aimed to identify ACS-related urinary peptides, that combined as a pattern can be used as prognostic biomarker. Proteomic data of 252 individuals enrolled in four prospective studies from Australia, Europe and North America were analyzed. 126 of these had suffered from ACS within a period of up to 5 years post urine sampling (cases). Proteomic analysis of 84 cases and 84 matched controls resulted in the discovery of 75 ACS-related urinary peptides. Combining these to a peptide pattern, we established a prognostic biomarker named Acute Coronary Syndrome Predictor 75 (ACSP75). ACSP75 demonstrated reasonable prognostic discrimination (c-statistic = 0.664), which was similar to Framingham risk scoring (c-statistics = 0.644) in a validation cohort of 42 cases and 42 controls. However, generating by a composite algorithm named Acute Coronary Syndrome Composite Predictor (ACSCP), combining the biomarker pattern ACSP75 with the previously established urinary proteomic biomarker CAD238 characterizing coronary artery disease as the underlying aetiology, and age as a risk factor, further improved discrimination (c-statistic = 0.751) resulting in an added prognostic value over Framingham risk scoring expressed by an integrated discrimination improvement of 0.273 ± 0.048 (P < 0.0001) and net reclassification improvement of 0.405 ± 0.113 (P = 0.0007). In conclusion, we demonstrate that urinary peptide biomarkers have the potential to predict future ACS events in asymptomatic patients. Further large scale studies are warranted to determine the role of urinary biomarkers in clinical practice

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
PLOS ONE. - 12, 3 (2017) , e0172036, ISSN: 1932-6203

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2019
Urheber
Htun, Nay M.
Magliano, Dianna J.
Zhang, Zhen-Yu
Lyons, Jasmine
Petit, Thibault
Nkuipou Kenfack, Esther
Ramirez-Torres, Adela
Zur Mühlen, Constantin von
Maahs, David M.
Schanstra, Joost P.
Pontillo, Claudia
Pejchinovski, Martin
Snell-Bergeon, Janet K.
Delles, Christian
Mischak, Harald
Staessen, Jan A.
Shaw, Jonathan E.
Koeck, Thomas
Peter, Karlheinz
Beteiligte Personen und Organisationen

DOI
10.1371/journal.pone.0172036
URN
urn:nbn:de:bsz:25-freidok-1412756
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:48 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2019

Ähnliche Objekte (12)