Arbeitspapier

Robust small area estimation under spatial non-stationarity

Geographically weighted small area methods have been studied in literature for small area estimation. Although these approaches are useful for the estimation of small area means efficiently under strict parametric assumptions, they can be very sensitive to outliers in the data. In this paper, we propose a robust extension of the geographically weighted empirical best linear unbiased predictor (GWEBLUP). In particular, we introduce robust projective and predictive small area estimators under spatial non-stationarity. Mean squared error estimation is performed by two different analytic approaches that account for the spatial structure in the data. The results from the model-based simulations indicate that the proposed approach may lead to gains in terms of efficiency. Finally, the methodology is demonstrated in an illustrative application for estimating the average total cash costs for farms in Australia.

Language
Englisch

Bibliographic citation
Series: Diskussionsbeiträge ; No. 2016/5

Classification
Wirtschaft
Subject
bias correction
geographical weighted regression
mean squared error
model-based simulation
spatial statistics

Event
Geistige Schöpfung
(who)
Baldermann, Claudia
Salvati, Nicola
Schmid, Timo
Event
Veröffentlichung
(who)
Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft
(where)
Berlin
(when)
2016

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Baldermann, Claudia
  • Salvati, Nicola
  • Schmid, Timo
  • Freie Universität Berlin, Fachbereich Wirtschaftswissenschaft

Time of origin

  • 2016

Other Objects (12)