Arbeitspapier
Strict Stationarity Testing and GLAD Estimation of Double Autoregressive Models
In this article we develop a tractable procedure for testing strict stationarity in a double autoregressive model and formulate the problem as testing if the top Lyapunov exponent is negative. Without strict stationarity assumption, we construct a consistent estimator of the associated top Lyapunov exponent and employ a random weighting approach for its variance estimation, which in turn are used in a t-type test. We also propose a GLAD estimation for parameters of interest, relaxing key assumptions on the commonly used QMLE. All estimators, except for the intercept, are shown to be consistent and asymptotically normal in both stationary and explosive situations. The nite-sample performance of the proposed procedures is evaluated via Monte Carlo simulation studies and a real dataset of interest rates is analyzed.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2018-049
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
DAR model
GLAD estimation
Nonstationarity
Random weighting
Strict stationarity testing
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Guo, Shaojun
Li, Dong
Li, Muyi
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Guo, Shaojun
- Li, Dong
- Li, Muyi
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2018