Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment
Abstract: Extreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystem stability is therefore considered crucial for mitigating adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics, species-level population stability, and drought-tolerance traits relate to the stability of forest productivity along an experimentally manipulated species richness gradient ranging from 1 to 24 tree species. Tree species richness improved community stability by increasing asynchrony. That is, at higher species richness, interannual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was positively related to variation in stomatal control and resistance-acquisition strategies among species, but not to the community-weighted means of these trait syndromes. The identified mechanisms by which tree species richness stabilizes forest productivity emphasize the importance of diverse, mixed-species forests to adapt to climate change
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Science advances. - 7, 51 (2021) , abk1643, ISSN: 2375-2548
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2022
- Urheber
-
Schnabel, Florian
Liu, Xiaojuan
Kunz, Matthias
Barry, Kathryn E.
Bongers, Franca J.
Bruelheide, Helge
Fichtner, Andreas
Härdtle, Werner
Li, Shan
Pfaff, Class-Thido
Schmid, Bernhard
Schwarz, Julia A.
Tang, Zhiyao
Yang, Bo
Bauhus, Jürgen
Oheimb, Goddert von
Ma, Keping
Wirth, Christian
- DOI
-
10.1126/sciadv.abk1643
- URN
-
urn:nbn:de:bsz:25-freidok-2235226
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:49 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Schnabel, Florian
- Liu, Xiaojuan
- Kunz, Matthias
- Barry, Kathryn E.
- Bongers, Franca J.
- Bruelheide, Helge
- Fichtner, Andreas
- Härdtle, Werner
- Li, Shan
- Pfaff, Class-Thido
- Schmid, Bernhard
- Schwarz, Julia A.
- Tang, Zhiyao
- Yang, Bo
- Bauhus, Jürgen
- Oheimb, Goddert von
- Ma, Keping
- Wirth, Christian
- Universität
Entstanden
- 2022