PDI-trityl dyads as photogenerated molecular spin qubit candidates

Abstract: Owing to their potential applications in the field of quantum information science, photogenerated organic triplet–radical conjugates have attracted an increasing amount of attention recently. Typically, these compounds are composed of a chromophore appended to a stable radical. After initialisation of the system by photoexcitation, a highly spin-polarised quartet state may be generated, which serves as a molecular spin qubit candidate. Here, we investigate three perylene diimide (PDI)-based chromophore–radical systems with different phenylene linkers and radical counterparts by both optical spectroscopy and transient electron paramagnetic resonance (EPR) techniques. Femtosecond transient absorption measurements demonstrate chromophore triplet state formation on a picosecond time scale for PDI–trityl dyads, while excited state deactivation is found to be slowed down considerably in a PDI–nitroxide analogue. The subsequent investigation of the coherent spin properties by transient EPR confirms quartet state formation by triplet–doublet spin mixing for all investigated dyads and the suitability of the two studied PDI–trityl dyads as spin qubit candidates. In particular, we show that using tetrathiaryl trityl as the radical counterpart, an intense spin polarisation is observed even at room temperature and quartet state coherence times of 3.0 μs can be achieved at 80 K, which represents a considerable improvement compared to previously studied systems

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
Chemical science. - 14, 39 (2023) , 10727-10735, ISSN: 2041-6539

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2024
Creator
Mayländer, Maximilian
Kopp, Kevin
Nolden, Oliver
Franz, Michael
Thielert, Philipp
Vargas Jentzsch, Andreas
Gilch, Peter
Schiemann, Olav
Richert, Sabine

DOI
10.1039/d3sc04375d
URN
urn:nbn:de:bsz:25-freidok-2536633
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:51 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2024

Other Objects (12)