Arbeitspapier
Generalized Kuhn-Tucker conditions for N-firm stochastic irreversible investment under limited resources
In this paper we study a continuous time, optimal stochastic investment problem under limited resources in a market with N firms. The investment processes are subject to a time-dependent stochastic constraint. Rather than using a dynamic programming approach, we exploit the concavity of the profit functional to derive some necessary and sufficient first order conditions for the corresponding Social Planner optimal policy. Our conditions are a stochastic infinite-dimensional generalization of the Kuhn-Tucker Theorem. As a subproduct we obtain an enlightening interpretation of the first order conditions for a single firm in Bank [SIAM Journal on Control and Optimization 44 (2005)]. In the infinite-horizon case, with operating profit functions of Cobb-Douglas type, our method allows the explicit calculation of the optimal policy in terms of the 'base capacity' process, i.e. the unique solution of the Bank and El Karoui representation problem [Annals of Probability 32 (2004)].
- Language
-
Englisch
- Bibliographic citation
-
Series: Working Papers ; No. 463
- Classification
-
Wirtschaft
Mathematical Methods
Investment; Capital; Intangible Capital; Capacity
Capital Budgeting; Fixed Investment and Inventory Studies; Capacity
- Subject
-
stochastic irreversible investment
optimal stopping
the Bank and El Karoui Representation Theorem
base capacity
Lagrange multiplier optional measure
Investition
Sunk Costs
Stochastischer Prozess
Suchtheorie
Nichtlineare Optimierung
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Chiarolla, Maria B.
Ferrari, Giorgio
Riedel, Frank
- Event
-
Veröffentlichung
- (who)
-
Bielefeld University, Institute of Mathematical Economics (IMW)
- (where)
-
Bielefeld
- (when)
-
2012
- Handle
- URN
-
urn:nbn:de:0070-pub-26717275
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Chiarolla, Maria B.
- Ferrari, Giorgio
- Riedel, Frank
- Bielefeld University, Institute of Mathematical Economics (IMW)
Time of origin
- 2012