Arbeitspapier

Generalized Kuhn-Tucker conditions for N-firm stochastic irreversible investment under limited resources

In this paper we study a continuous time, optimal stochastic investment problem under limited resources in a market with N firms. The investment processes are subject to a time-dependent stochastic constraint. Rather than using a dynamic programming approach, we exploit the concavity of the profit functional to derive some necessary and sufficient first order conditions for the corresponding Social Planner optimal policy. Our conditions are a stochastic infinite-dimensional generalization of the Kuhn-Tucker Theorem. As a subproduct we obtain an enlightening interpretation of the first order conditions for a single firm in Bank [SIAM Journal on Control and Optimization 44 (2005)]. In the infinite-horizon case, with operating profit functions of Cobb-Douglas type, our method allows the explicit calculation of the optimal policy in terms of the 'base capacity' process, i.e. the unique solution of the Bank and El Karoui representation problem [Annals of Probability 32 (2004)].

Language
Englisch

Bibliographic citation
Series: Working Papers ; No. 463

Classification
Wirtschaft
Mathematical Methods
Investment; Capital; Intangible Capital; Capacity
Capital Budgeting; Fixed Investment and Inventory Studies; Capacity
Subject
stochastic irreversible investment
optimal stopping
the Bank and El Karoui Representation Theorem
base capacity
Lagrange multiplier optional measure
Investition
Sunk Costs
Stochastischer Prozess
Suchtheorie
Nichtlineare Optimierung
Theorie

Event
Geistige Schöpfung
(who)
Chiarolla, Maria B.
Ferrari, Giorgio
Riedel, Frank
Event
Veröffentlichung
(who)
Bielefeld University, Institute of Mathematical Economics (IMW)
(where)
Bielefeld
(when)
2012

Handle
URN
urn:nbn:de:0070-pub-26717275
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Chiarolla, Maria B.
  • Ferrari, Giorgio
  • Riedel, Frank
  • Bielefeld University, Institute of Mathematical Economics (IMW)

Time of origin

  • 2012

Other Objects (12)