Arbeitspapier

Optimal stopping under ambiguity in continuous time

We develop a theory of optimal stopping problems under ambiguity in continuous time. Using results from (backward) stochastic calculus, we characterize the value function as the smallest (nonlinear) supermartingale dominating the payoff process. For Markovian models, we derive an adjusted Hamilton-Jacobi-Bellman equation involving a nonlinear drift term that stems from the agent's ambiguity aversion. We show how to use these general results for search problems and American Options.

Language
Englisch

Bibliographic citation
Series: Working Papers ; No. 429

Classification
Wirtschaft
Criteria for Decision-Making under Risk and Uncertainty
Optimization Techniques; Programming Models; Dynamic Analysis
Portfolio Choice; Investment Decisions
Subject
Optimal stopping
Ambiguity
Uncertainty aversion
Robustness
Continuous time
Optimal control
Entscheidung bei Unsicherheit
Suchtheorie
Risikoaversion
Theorie

Event
Geistige Schöpfung
(who)
Riedel, Frank
Event
Veröffentlichung
(who)
Bielefeld University, Institute of Mathematical Economics (IMW)
(where)
Bielefeld
(when)
2010

Handle
URN
urn:nbn:de:hbz:361-16765
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Riedel, Frank
  • Bielefeld University, Institute of Mathematical Economics (IMW)

Time of origin

  • 2010

Other Objects (12)