Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory

Location
Deutsche Nationalbibliothek Frankfurt am Main
ISSN
2045-2322
Extent
Online-Ressource
Language
Englisch
Notes
online resource.

Bibliographic citation
Assessment of the uncertainty and interpretability of deep learning models for mapping soil salinity using DeepQuantreg and game theory ; volume:12 ; number:1 ; day:7 ; month:9 ; year:2022 ; pages:1-12 ; date:12.2022
Scientific reports ; 12, Heft 1 (7.9.2022), 1-12, 12.2022

Creator
Mohammadifar, Aliakbar
Gholami, Hamid
Golzari, Shahram
Contributor
SpringerLink (Online service)

DOI
10.1038/s41598-022-19357-4
URN
urn:nbn:de:101:1-2022112421333893909106
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Mohammadifar, Aliakbar
  • Gholami, Hamid
  • Golzari, Shahram
  • SpringerLink (Online service)

Other Objects (12)