A noise-robust deep clustering of biomolecular ions improves interpretability of mass spectrometric images

Abstract: Motivation

Mass Spectrometry Imaging (MSI) analyzes complex biological samples such as tissues. It simultaneously characterizes the ions present in the tissue in the form of mass spectra, and the spatial distribution of the ions across the tissue in the form of ion images. Unsupervised clustering of ion images facilitates the interpretation in the spectral domain, by identifying groups of ions with similar spatial distributions. Unfortunately, many current methods for clustering ion images ignore the spatial features of the images, and are therefore unable to learn these features for clustering purposes. Alternative methods extract spatial features using deep neural networks pre-trained on natural image tasks; however, this is often inadequate since ion images are substantially noisier than natural images.
Results

We contribute a deep clustering approach for ion images that accounts for both spatial contextual features and noise. In evaluations on a simulated dataset and on four experimental datasets of different tissue types, the proposed method grouped ions from the same source into a same cluster more frequently than existing methods. We further demonstrated that using ion image clustering as a pre-processing step facilitated the interpretation of a subsequent spatial segmentation as compared to using either all the ions or one ion at a time. As a result, the proposed approach facilitated the interpretability of MSI data in both the spectral domain and the spatial domain

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Bioinformatics. - 39, 2 (2023) , btad067, ISSN: 1367-4811

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2023
Urheber
Guo, Dan
Föll, Melanie Christine
Bemis, Kylie Ariel
Vitek, Olga

DOI
10.1093/bioinformatics/btad067
URN
urn:nbn:de:bsz:25-freidok-2340582
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:02 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Guo, Dan
  • Föll, Melanie Christine
  • Bemis, Kylie Ariel
  • Vitek, Olga
  • Universität

Entstanden

  • 2023

Ähnliche Objekte (12)