Artikel
Machine learning and financial literacy: An exploration of factors influencing financial knowledge in Italy
In recent years, machine learning techniques have assumed an increasingly central role in many areas of research, from computer science to medicine, including finance. In the current study, we applied it to financial literacy to test its accuracy, compared to a standard parametric model, in the estimation of the main determinants of financial knowledge. Using recent data on financial literacy and inclusion among Italian adults, we empirically tested how tree-based machine learning methods, such as decision trees, random, forest and gradient boosting techniques, can be a valuable complement to standard models (generalized linear models) for the identification of the groups in the population in most need of improving their financial knowledge.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 3 ; Pages: 1-21 ; Basel: MDPI
- Klassifikation
-
Wirtschaft
- Thema
-
machine learning
decision trees
financial literacy
gradient boosting
random forest
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Levantesi, Susanna
Zacchia, Giulia
- Ereignis
-
Veröffentlichung
- (wer)
-
MDPI
- (wo)
-
Basel
- (wann)
-
2021
- DOI
-
doi:10.3390/jrfm14030120
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Levantesi, Susanna
- Zacchia, Giulia
- MDPI
Entstanden
- 2021