Arbeitspapier

Non-gaussian component analysis: New ideas, new proofs, new applications

In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption enables us for a special representation for the density function of X. Similar facts are proven in original papers about NGCA ([1], [5], [13]), but our representation differs from the previous versions. The new form helps us to provide a strong theoretical support for the algorithm; moreover, it gives some ideas about new approaches in multidimensional statistical analysis. In this paper, we establish important results for the NGCA procedure using the new representation, and show benefits of our method.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2010,026

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Thema
dimension reduction
non-Gaussian components
EDR subspace
classification problem
Value at Risk
Hauptkomponentenanalyse
Statistische Verteilung
Clusteranalyse
Value at Risk
Theorie

Ereignis
Geistige Schöpfung
(wer)
Panov, Vladimir
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Panov, Vladimir
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2010

Ähnliche Objekte (12)