Arbeitspapier

Non-gaussian component analysis: New ideas, new proofs, new applications

In this article, we present new ideas concerning Non-Gaussian Component Analysis (NGCA). We use the structural assumption that a high-dimensional random vector X can be represented as a sum of two components - a lowdimensional signal S and a noise component N. We show that this assumption enables us for a special representation for the density function of X. Similar facts are proven in original papers about NGCA ([1], [5], [13]), but our representation differs from the previous versions. The new form helps us to provide a strong theoretical support for the algorithm; moreover, it gives some ideas about new approaches in multidimensional statistical analysis. In this paper, we establish important results for the NGCA procedure using the new representation, and show benefits of our method.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2010,026

Classification
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Subject
dimension reduction
non-Gaussian components
EDR subspace
classification problem
Value at Risk
Hauptkomponentenanalyse
Statistische Verteilung
Clusteranalyse
Value at Risk
Theorie

Event
Geistige Schöpfung
(who)
Panov, Vladimir
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2010

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Panov, Vladimir
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2010

Other Objects (12)