Integrating Manual and Automatic Annotation for the Creation of Discourse Network Data Sets

Abstract: This article investigates the integration of machine learning in the political claim annotation workflow with the goal to partially automate the annotation and analysis of large text corpora. It introduces the MARDY annotation environment and presents results from an experiment in which the annotation quality of annotators with and without machine learning based annotation support is compared. The design and setting aim to measure and evaluate: a) annotation speed; b) annotation quality; and c) applicability to the use case of discourse network generation. While the results indicate only slight increases in terms of annotation speed, the authors find a moderate boost in annotation quality. Additionally, with the help of manual annotation of the actors and filtering out of the false positives, the machine learning based annotation suggestions allow the authors to fully recover the core network of the discourse as extracted from the articles annotated during the experiment. This is d

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Politics and Governance ; 8 (2020) 2 ; 326-339

Ereignis
Veröffentlichung
(wo)
Mannheim
(wer)
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
(wann)
2020
Urheber
Haunss, Sebastian
Kuhn, Jonas
Padó, Sebastian
Blessing, Andre
Blokker, Nico
Dayanik, Erenay
Lapesa, Gabriella

DOI
10.17645/pag.v8i2.2591
URN
urn:nbn:de:101:1-2022070515360534123824
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Haunss, Sebastian
  • Kuhn, Jonas
  • Padó, Sebastian
  • Blessing, Andre
  • Blokker, Nico
  • Dayanik, Erenay
  • Lapesa, Gabriella
  • SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Entstanden

  • 2020

Ähnliche Objekte (12)