Artikel

Copula-based factor models for multivariate asset returns

Recently, several copula-based approaches have been proposed for modeling stationary multivariate time series. All of them are based on vine copulas, and they differ in the choice of the regular vine structure. In this article, we consider a copula autoregressive (COPAR) approach to model the dependence of unobserved multivariate factors resulting from two dynamic factor models. However, the proposed methodology is general and applicable to several factor models as well as to other copula models for stationary multivariate time series. An empirical study illustrates the forecasting superiority of our approach for constructing an optimal portfolio of U.S. industrial stocks in the mean-variance framework.

Sprache
Englisch

Erschienen in
Journal: Econometrics ; ISSN: 2225-1146 ; Volume: 5 ; Year: 2017 ; Issue: 2 ; Pages: 1-24 ; Basel: MDPI

Klassifikation
Wirtschaft
Financial Econometrics
Forecasting Models; Simulation Methods
Econometric and Statistical Methods and Methodology: General
General Financial Markets: General (includes Measurement and Data)
Thema
COPAR model
dynamic factor model
multivariate time series
optimal mean-variance portfolio
vine copula

Ereignis
Geistige Schöpfung
(wer)
Ivanov, Eugen
Min, Aleksey
Ramsauer, Franz
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2017

DOI
doi:10.3390/econometrics5020020
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Ivanov, Eugen
  • Min, Aleksey
  • Ramsauer, Franz
  • MDPI

Entstanden

  • 2017

Ähnliche Objekte (12)