Artikel

A copula-based multivariate hidden Markov model for modelling momentum in football

We investigate the potential occurrence of change points—commonly referred to as “momentum shifts”—in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state dependence of the variables, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.

Language
Englisch

Bibliographic citation
Journal: AStA Advances in Statistical Analysis ; ISSN: 1863-818X ; Volume: 107 ; Year: 2021 ; Issue: 1-2 ; Pages: 9-27 ; Berlin, Heidelberg: Springer

Classification
Mathematik
Subject
Statistics, general
Statistics for Business, Management, Economics, Finance, Insurance
Probability Theory and Stochastic Processes
Econometrics

Event
Geistige Schöpfung
(who)
Ötting, Marius
Langrock, Roland
Maruotti, Antonello
Event
Veröffentlichung
(who)
Springer
(where)
Berlin, Heidelberg
(when)
2021

DOI
doi:10.1007/s10182-021-00395-8
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Ötting, Marius
  • Langrock, Roland
  • Maruotti, Antonello
  • Springer

Time of origin

  • 2021

Other Objects (12)