Graph‐to‐local limit for a multi‐species nonlocal cross‐interaction system
Abstract: In this note we continue the study of nonlocal interaction dynamics on a sequence of infinite graphs, extending the results of Benamou and Brenier to an arbitrary number of species. Our analysis relies on the observation that the graph dynamics form a gradient flow with respect to a non‐symmetric Finslerian gradient structure. Keeping the nonlocal interaction energy fixed, while localizing the graph structure, we are able to prove evolutionary Γ‐convergence to an Otto‐Wassertein‐type gradient flow with a tensor‐weighted, yet symmetric, inner product. As a byproduct this implies the existence of solutions to the multi‐species non‐local (cross‐) interaction system on the tensor‐weighted Euclidean space.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Graph‐to‐local limit for a multi‐species nonlocal cross‐interaction system ; day:23 ; month:09 ; year:2023 ; extent:8
Proceedings in applied mathematics and mechanics ; (23.09.2023) (gesamt 8)
- Creator
- DOI
-
10.1002/pamm.202300094
- URN
-
urn:nbn:de:101:1-2023092415010686451192
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:57 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Esposito, Antonio
- Heinze, Georg
- Pietschmann, Jan-Frederik
- Schlichting, André