Existence of solutions to contact mean-field games of first order

Abstract: This paper deals with the existence of solutions of a class of contact mean-field game systems of first order consisting of a contact Hamilton-Jacobi equation and a continuity equation. Evans found a connection between Hamilton-Jacobi equations and continuity equations from the weak KAM point of view, where the coupling term is zero. Inspired by his work, we prove the main existence result by analyzing the properties of the Mather set for contact Hamiltonian systems.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Existence of solutions to contact mean-field games of first order ; volume:22 ; number:1 ; year:2022 ; pages:289-307 ; extent:19
Advanced nonlinear studies ; 22, Heft 1 (2022), 289-307 (gesamt 19)

Creator
Hu, Xiaotian
Wang, Kaizhi

DOI
10.1515/ans-2022-0012
URN
urn:nbn:de:101:1-2022072214194887706914
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:26 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Hu, Xiaotian
  • Wang, Kaizhi

Other Objects (12)