Existence of solutions to contact mean-field games of first order
Abstract: This paper deals with the existence of solutions of a class of contact mean-field game systems of first order consisting of a contact Hamilton-Jacobi equation and a continuity equation. Evans found a connection between Hamilton-Jacobi equations and continuity equations from the weak KAM point of view, where the coupling term is zero. Inspired by his work, we prove the main existence result by analyzing the properties of the Mather set for contact Hamiltonian systems.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Existence of solutions to contact mean-field games of first order ; volume:22 ; number:1 ; year:2022 ; pages:289-307 ; extent:19
Advanced nonlinear studies ; 22, Heft 1 (2022), 289-307 (gesamt 19)
- Creator
-
Hu, Xiaotian
Wang, Kaizhi
- DOI
-
10.1515/ans-2022-0012
- URN
-
urn:nbn:de:101:1-2022072214194887706914
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:26 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Hu, Xiaotian
- Wang, Kaizhi