Introducing block-Toeplitz covariance matrices to remaster linear discriminant analysis for event-related potential brain–computer interfaces

Abstract: Objective. Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain–computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization. As this is a general covariance regularization approach, we aim at improving LDA further by better exploiting the domain-specific characteristics of the EEG to regularize the covariance estimates. Approach. We propose to enforce a block-Toeplitz structure for the covariance matrix of the LDA, which implements an assumption of signal stationarity in short time windows for each channel. Main results. An offline re-analysis of data collected from 213 subjects under 13 different event-related potential BCI protocols showed a significantly increased binary classification performance of this 'ToeplitzLDA' compared to shrinkage regularized LDA (up to 6 AUC points, p < 0.001) and Riemannian classification approaches (up to 2 AUC points, p < 0.001). In an unsupervised visual speller application, this improvement would translate to a relative reduction of spelling errors by 81% on average for 25 subjects. Additionally, aside from lower memory and reduced time complexity for LDA training, ToeplitzLDA proves to be robust against drastic increases of the number of temporal features. Significance. The proposed covariance estimation allows BCI researchers to improve classification rates and reduce calibration times of BCI protocols using event-related potentials and thus support the usability of corresponding applications. Its lower computational and memory needs could make it a valuable algorithm especially for mobile BCIs

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Journal of neural engineering. - 19, 6 (2022) , 066001, ISSN: 1741-2552

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2022
Urheber

DOI
10.1088/1741-2552/ac9c98
URN
urn:nbn:de:bsz:25-freidok-2308465
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2022

Ähnliche Objekte (12)