Artikel

Harsanyi support levels solutions

We introduce a new class of values for TU-games (games with transferable utility) with a level structure, called LS-games. A level structure is a hierarchical structure where each level corresponds to a partition of the player set, which becomes increasingly coarse from the trivial partition containing only singletons to the partition containing only the grand coalition. The new values, called Harsanyi support levels solutions, extend the Harsanyi solutions for LS-games. As an important subset of the class of these values, we present the class of weighted Shapley support levels values as a further result. The values from this class extend the weighted Shapley values for LS-games and contain the Shapley levels value as a special case. Axiomatizations of the studied classes are provided.

Language
Englisch

Bibliographic citation
Journal: Theory and Decision ; ISSN: 1573-7187 ; Volume: 93 ; Year: 2021 ; Issue: 1 ; Pages: 105-130 ; New York, NY: Springer US

Classification
Sozialwissenschaften, Soziologie, Anthropologie
Subject
Cooperative game
Level structure
(Weighted) Shapley (levels) value
Harsanyi set
Dividends

Event
Geistige Schöpfung
(who)
Besner, Manfred
Event
Veröffentlichung
(who)
Springer US
(where)
New York, NY
(when)
2021

DOI
doi:10.1007/s11238-021-09827-y
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Besner, Manfred
  • Springer US

Time of origin

  • 2021

Other Objects (12)