Stability Criterion of Difference Schemes for the Heat Conduction Equation with Nonlocal Boundary Conditions

Abstract: The elements of the stability theory of nonselfadoint difference schemes for nonstationary problems of mathematical physics are discussed. Difference schemes for the heat conduction equation with nonlocal boundary conditions are considered in detail from the viewpoint of the general stability theory of two-layer operator-difference schemes. The necessary and sufficient stability conditions in the sense of the initial data in special energy norm have been found. The equivalence of the energy norm to the grid L2-norm has been proved. A priori estimates expressing the difference schemes stability in the sense of the right-hand side have been constructed.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Stability Criterion of Difference Schemes for the Heat Conduction Equation with Nonlocal Boundary Conditions ; volume:6 ; number:1 ; year:2006 ; pages:31-55
Computational methods in applied mathematics ; 6, Heft 1 (2006), 31-55

Urheber
Gulin, A.
Ionkin, N.
Morozova, V.

DOI
10.2478/cmam-2006-0002
URN
urn:nbn:de:101:1-2410261618549.655529483665
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Gulin, A.
  • Ionkin, N.
  • Morozova, V.

Ähnliche Objekte (12)