Exact Difference Schemes for Hyperbolic Equations

Abstract: In the present paper, an exact difference scheme for the initial boundary- value problem of the third kind for an inhomogeneous hyperbolic equation of the second order with constant coefficients has been constructed on ordinary rectangular grids with constant space and time steps, where the Courant number γ=1. Later we proved a priori estimates of the stability in energy norm. For a quasi-linear wave equation on the moving characteristic grid a difference scheme has been constructed, which has the second order of approximation for the initial boundary-value problem and is exact for the Cauchy problem. The computational results for smooth functions and for a weak solution confirm the high accuracy of the introduced algorithm. We have also constructed exact difference schemes for the Cauchy problem for a system of two hyperbolic equations of the first order with constant coefficients on grids with constant space and time steps. Stability in energy norm for one of the constructed schemes has been proved. Using a method analogous to that used for the nonlinear wave equation a difference scheme for a nonlinear gas dynamic system has been constructed.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Exact Difference Schemes for Hyperbolic Equations ; volume:7 ; number:4 ; year:2007 ; pages:341-364
Computational methods in applied mathematics ; 7, Heft 4 (2007), 341-364

Urheber
Matus, P.
Kołodyńska, A.

DOI
10.2478/cmam-2007-0021
URN
urn:nbn:de:101:1-2410261628070.790177977753
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Matus, P.
  • Kołodyńska, A.

Ähnliche Objekte (12)