Arbeitspapier

A note on stochastic dominance and compactness

In this work, we discuss completeness for the lattice orders of first and second order stochastic dominance. The main results state that, both, first and second order stochastic dominance induce Dedekind super complete lattices, i.e. lattices in which every bounded nonempty subset has a countable subset with identical least upper bound and greatest lower bound. Moreover, we show that, if a suitably bounded set of probability measures is directed (e.g. a lattice), then the supremum and infimum w.r.t. first or second order stochastic dominance can be approximated by sequences in the weak topology or in the Wasserstein-1 topology, respectively. As a consequence, we are able to prove that a sublattice of probability measures is complete w.r.t. first order stochastic dominance or second order stochastic dominance and increasing convex order if and only if it is compact in the weak topology or in the Wasserstein-1 topology, respectively. This complements a set of characterizations of tightness and uniform integrability, which are discussed in a preliminary section.

Sprache
Englisch

Erschienen in
Series: Center for Mathematical Economics Working Papers ; No. 623

Klassifikation
Wirtschaft
Thema
Stochastic dominance
complete lattice
tightness
uniform integrability
Wassersteindistance

Ereignis
Geistige Schöpfung
(wer)
Nendel, Max
Ereignis
Veröffentlichung
(wer)
Bielefeld University, Center for Mathematical Economics (IMW)
(wo)
Bielefeld
(wann)
2019

Handle
URN
urn:nbn:de:0070-pub-29372610
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Nendel, Max
  • Bielefeld University, Center for Mathematical Economics (IMW)

Entstanden

  • 2019

Ähnliche Objekte (12)