Arbeitspapier
Robust risk management: accounting for nonstationarity and heavy tails
In the ideal Black-Scholes world, financial time series are assumed 1) stationary (time homogeneous) and 2) having conditionally normal distribution given the past. These two assumptions have been widely-used in many methods such as the RiskMetrics, one risk management method considered as industry standard. However these assumptions are unrealistic. The primary aim of the paper is to account for nonstationarity and heavy tails in time series by presenting a local exponential smoothing approach, by which the smoothing parameter is adaptively selected at every time point and the heavy-tailedness of the process is considered. A complete theory addresses both issues. In our study, we demonstrate the implementation of the proposed method in volatility estimation and risk management given simulated and real data. Numerical results show the proposed method delivers accurate and sensitive estimates.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2007,002
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Forecasting Models; Simulation Methods
- Thema
-
exponential smoothing
spatial aggregation
Risikomanagement
Robustes Verfahren
Black-Scholes-Modell
Zeitreihenanalyse
Statistische Verteilung
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chen, Ying
Spokoiny, Vladimir
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2007
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chen, Ying
- Spokoiny, Vladimir
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2007