Arbeitspapier

Robust risk management: accounting for nonstationarity and heavy tails

In the ideal Black-Scholes world, financial time series are assumed 1) stationary (time homogeneous) and 2) having conditionally normal distribution given the past. These two assumptions have been widely-used in many methods such as the RiskMetrics, one risk management method considered as industry standard. However these assumptions are unrealistic. The primary aim of the paper is to account for nonstationarity and heavy tails in time series by presenting a local exponential smoothing approach, by which the smoothing parameter is adaptively selected at every time point and the heavy-tailedness of the process is considered. A complete theory addresses both issues. In our study, we demonstrate the implementation of the proposed method in volatility estimation and risk management given simulated and real data. Numerical results show the proposed method delivers accurate and sensitive estimates.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2007,002

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Forecasting Models; Simulation Methods
Thema
exponential smoothing
spatial aggregation
Risikomanagement
Robustes Verfahren
Black-Scholes-Modell
Zeitreihenanalyse
Statistische Verteilung
Theorie

Ereignis
Geistige Schöpfung
(wer)
Chen, Ying
Spokoiny, Vladimir
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chen, Ying
  • Spokoiny, Vladimir
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2007

Ähnliche Objekte (12)