Arbeitspapier

Maximal Arbitrage

Let S=(S_t), t=0,1,...,T (T being finite), be an adapted R^d-valued process. Each component process of S might be interpreted as the price process of a certain security. A trading strategy H=(H_t), t= 1,...,T, is a predictable R^d-valued process. A strategy H is called extreme if it represents a maximal arbitrage opportunity. By this we mean that H generates at time T a nonnegative portfolio value which is positive with maximal probability. Let $F^e$ denote the set of all states of the world at which the portfolio value at time T, generated by an extreme strategy (which is shown to exist), is equal to zero. We characterize those subsets of F^e, on which no arbitrage opportunities exist.

Sprache
Englisch

Erschienen in
Series: Bonn Econ Discussion Papers ; No. 9/2002

Klassifikation
Wirtschaft
Asset Pricing; Trading Volume; Bond Interest Rates
Market Structure, Pricing, and Design: General
Contingent Pricing; Futures Pricing; option pricing
Thema
Arbitrage
martingale measure
Arbitrage Pricing
Martingale
Theorie

Ereignis
Geistige Schöpfung
(wer)
Schürger, Klaus
Ereignis
Veröffentlichung
(wer)
University of Bonn, Bonn Graduate School of Economics (BGSE)
(wo)
Bonn
(wann)
2002

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Schürger, Klaus
  • University of Bonn, Bonn Graduate School of Economics (BGSE)

Entstanden

  • 2002

Ähnliche Objekte (12)