Arbeitspapier
Maximal Arbitrage
Let S=(S_t), t=0,1,...,T (T being finite), be an adapted R^d-valued process. Each component process of S might be interpreted as the price process of a certain security. A trading strategy H=(H_t), t= 1,...,T, is a predictable R^d-valued process. A strategy H is called extreme if it represents a maximal arbitrage opportunity. By this we mean that H generates at time T a nonnegative portfolio value which is positive with maximal probability. Let $F^e$ denote the set of all states of the world at which the portfolio value at time T, generated by an extreme strategy (which is shown to exist), is equal to zero. We characterize those subsets of F^e, on which no arbitrage opportunities exist.
- Sprache
-
Englisch
- Erschienen in
-
Series: Bonn Econ Discussion Papers ; No. 9/2002
- Klassifikation
-
Wirtschaft
Asset Pricing; Trading Volume; Bond Interest Rates
Market Structure, Pricing, and Design: General
Contingent Pricing; Futures Pricing; option pricing
- Thema
-
Arbitrage
martingale measure
Arbitrage Pricing
Martingale
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Schürger, Klaus
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Bonn, Bonn Graduate School of Economics (BGSE)
- (wo)
-
Bonn
- (wann)
-
2002
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Schürger, Klaus
- University of Bonn, Bonn Graduate School of Economics (BGSE)
Entstanden
- 2002