Arbeitspapier
Estimating heterogeneous reactions to experimental treatments
Frequently in experiments there is not only variance in the reaction of participants to treatment. The heterogeneity is patterned: discernible types of participants react differently. In principle, a finite mixture model is well suited to simultaneously estimate the probability that a given participant belongs to a certain type, and the reaction of this type to treatment. Yet often, finite mixture models need more data than the experiment provides. The approach requires ex ante knowledge about the number of types. Finite mixture models are hard to estimate for panel data, which is what experiments often generate. For repeated experiments, this paper offers a simple two-step alternative that is much less data hungry, that allows to find the number of types in the data, and that allows for the estimation of panel data models. It combines machine learning methods with classic frequentist statistics.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Papers of the Max Planck Institute for Research on Collective Goods ; No. 2019/1
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Design of Experiments: Laboratory, Individual
- Thema
-
heterogeneous treatment effect
finite mixture model
panel data
two-step approach
machine learning
CART
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Engel, Christoph
- Ereignis
-
Veröffentlichung
- (wer)
-
Max Planck Institute for Research on Collective Goods
- (wo)
-
Bonn
- (wann)
-
2019
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:21 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Engel, Christoph
- Max Planck Institute for Research on Collective Goods
Entstanden
- 2019