Arbeitspapier
Simultaneously Modelling Conditional Heteroskedasticity and Scale Change
This paper proposes a semiparametric approach by introducing a smooth scale function into the standard GARCH model so that conditional heteroskedasticity and scale change in a financial time series can be modelled simultaneously. An estimation procedure combining kernel estimation of the scale function and maximum likelihood estimation of the GARCH parameters is proposed. Asymptotic proper- ties of the kernel estimator are investigated in detail. An iterative plug-in algorithm is developed for selecting the bandwidth. Practical performance of the proposal is illustrated by simulation. The proposal is applied to the daily S&P 500 and DAX 100 returns. It is shown that there are simultaneously significant conditional heteroskedasticity and scale change in these series.
- Language
-
Englisch
- Bibliographic citation
-
Series: CoFE Discussion Paper ; No. 02/12
- Classification
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Semiparametric and Nonparametric Methods: General
- Subject
-
Semiparametric GARCH
conditional heteroskedasticity
scale change
nonparametric regression with dependence
bandwidth selection
ARCH-Modell
Nichtparametrisches Verfahren
Schätztheorie
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Feng, Yuanhua
- Event
-
Veröffentlichung
- (who)
-
University of Konstanz, Center of Finance and Econometrics (CoFE)
- (where)
-
Konstanz
- (when)
-
2002
- Handle
- URN
-
urn:nbn:de:bsz:352-opus-8289
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Feng, Yuanhua
- University of Konstanz, Center of Finance and Econometrics (CoFE)
Time of origin
- 2002